流体诱发换热器管束振动机理与防振

[ 字号: ] [ 关闭 ] 2008-11-29 10:14:50 来自网络 作者:admin 浏览次数: 发表评论

关键词:换热器 热管 传热

 1 换热器的振动破坏形式

      随着流体的流动,换热器内的传热元件总会产生一些微小的振动,这并不会导致损坏。只有当流体诱发振动的频率与传热元件的固有频率一致或相当接近时,传热元件的振幅激增,才导致破坏。通常,传热管是换热器中挠性最大的部件,对振动也最敏感。因此,大多数振动破坏都是换热器管束的机械损坏。在实际工程中常见的破坏形式主要有以下几种:

    1.1 撞击破坏  

    当管子振动的振幅大到足以使相邻管子互相撞击,或边缘管不断击打壳体,在管子的撞击部位将产生特有的菱形磨损形式,管壁不断减薄而至最后开裂。

    1.2 挡板损伤  

    为了便于安装,一般挡板开孔较管子直径略大,当挡板较薄时,管子振动会在管壁与挡板孔边缘之间产生较高的接触力,对管子有一种锯割作用,短时间内即可将管子切开发生局部失效。

    1.3 接头泄漏

    管子与管板的连接处是换热器中十分重要的结构,然而在工程实际中,由于管子振动使管子与管板连接处受力较大,从而导致胀接或焊接点的损坏,造成泄漏。

    1.4 应力疲劳  

    管子振动的振幅较大时,管子反复弯折的扭弯应力较高,长时间的连续振动会使管子断裂。这种损伤还会由于腐蚀作用而加速。

    1.5 冶金失效  

    振动使换热管产生交变应力,导致管子表层的氧化层脱落,管子表面留下坑点。在坑点处引起应力集中,导致管子失效,缩短了管子寿命。

    1.6 材料缺陷扩展  

    振动所引起的应力脉动会使管材中的微观缺陷扩展,以致产生大裂纹,最终使管子受到破坏。

    2 流体诱发换热器管束振动机理

    管壳式换热器管束振动主要是由壳程流体流动所引起的,而管程流体流动的影响可忽略不计。产生振动的振源为流体稳定流动产生的振动,流体速度的波动,通过管道或其它连接件传播的动力机械振动等,横向流是流体诱导管束振动的主要根源。

    2.1 漩涡脱落诱导振动

  当流体橫掠换热管时,如果流动雷诺数大到一定程度,在其两侧的下游交替发生漩涡,形成周期性的漩涡尾流,致使圆管上的压力分布也呈周期性变化。圆管两侧的静压不同,产生一个垂直于流动方向的升力,其大小与方向随漩涡的脱落而不断变化。正是由于这种升力的交替变化,导致了圆管与流体流动方向垂直的振动。同样,由于漩涡的脱落也使流动阻力发生交替性变化,从而导致圆管在流体流动方向上的振动。圆管的振动频率与漩涡的脱落频率有关,但理论上求解漩涡脱落频率相当困难,因此工程实际中一般用strouhal数来确定漩涡脱落的频率。漩涡脱落的频率为:

              fv=SU0/D

    式中 fv———漩涡脱落的频率,Hz   

          U0———来流速度,m/s   

          D———圆柱体直径,m;非圆柱体时为垂直于来流的最大宽度

    由此可见,当管径一定时,流速越大流体诱导振动频率越大。当漩涡脱落频率接近或等于管子固有频率时,就会产生强烈的振动。

    2.2 紊流抖振  

    紊流抖振是一个由随机力作用的衰减振动,管子仅在其固有频率附近产生响应,振动的峰值出现在脉动力的主频率与管子的固有频率重合之处。脉动力的主频率fb为:

            

    式中 fb———紊流脉动的频率,Hz   

          U———相邻两管间的流体平均速度,m/s   

          d0———管子的外径,m   

          T———管束的横向管间距,m   

          L———两个连续管排间的中心线距离,m紊流脉动的频率范围较宽且具有很强的随机性。由紊流抖振而诱发的振动不很规律,较少导致大范围的共振响应。紊流抖振不是导致管子破坏的主要原因,而是产生流体弹性激振的重要因素。

    2.3 流体弹性激振

    换热器内密集的管束中,任何一根管子的运动都会改变周围的流场。流场的改变则使作用在相邻管子上的流体发生相应的改变,从而使受力作用的管子发生振动,从而进一步改变了作用在其中的流体力。一根管子的位移会对相邻的管子施加流体力而使其也产生位移。这种流体力与弹性位移的相互作用就叫做流体弹性激振。它一般是在已有其它机理诱发起管子运动的情况下产生的。其特点是流体速度一旦超过某一临界速度值并稍有增加时,振幅即有大幅度增加,若阻尼不太大时,形成的振幅将一直增大到管子互相碰撞。这种振动在流体速度减小到远低于初始速度时仍会持续。研究表明,流体速度较低时,振动可能由漩涡脱落或紊流抖振引起,而在速度较高区域,诱发振动机理主要是流体激振。

    2.4 声共鸣

    当流体的激振频率接近于换热器内空气的柱振动的固有频率时,就会在换热器内产生声共鸣。其产生的原因是在一定条件下,卡曼漩涡的漩涡脱离会激起室壁之间的某阶驻波,这种驻波在管壳之间来回反射,不断向外传播能量,卡曼漩涡却不断输入能量。当卡曼漩涡频率fv与声学驻波频率fa之比在0.8~1.2范围内时,气室内可能产生强烈的声学共振和噪音。当壳程流体是液体时,由于液体的音速极高,这种振动不会产生。

    2.5 脉动流诱发振动  

    流体脉动引起的管子振动属于强迫振动。由脉动流诱发的换热器内振动目前还很少有人进行完整的理论探讨与实验,但是这种振型无论在理论上还是在实践上都具有相当重要的意义。

    3 振动的防止与有效利用

    换热器内流体诱导振动的机理相当复杂,能够有效地防止振动的完整的设计准则尚未建立起来。这就需要在运行过程中根据不同的操作情况,采用不同的措施来防止换热器的振动。振动是不可避免的但是轻微的振动不但不会带来损坏,而且还有强化传热和减少结垢的作用。但是强烈的振动应该采取必要的防振措施以减缓振动,避免换热器振动破坏。抗振的根本途经是激振力频率尽量避开管子的固有频率。工程实践中常采用以下的抗振措施:

  (1)制定合理的开停工程序,加强在线监测,严格控制运行条件,在流体入口前设置缓冲板或导流筒,既可以避免流体直接冲击管束,降低流速,又可以减小流体脉动。  

    (2)降低换热器壳侧流体速度是防止管束振动的最直接的方法。因为当传热元件的固有频率不变时,降低流速,可使流体脉动的频率降低,从而避免共振的产生,但同时传热效率也会随之降低。  

    (3)提高传热元件的固有频率是防止振动的另一个关键因素,减少跨距与有效质量,增加材料的弹性模量与惯性矩,都可以提高传热元件的固有频率。适当增大管壁厚度、增大圆管直径和折流板厚度,折流板上的管孔与管子采用紧密配合,间隙不要过大,可以优化结构设计等。  

    (4)改变管束支撑形式,采用新型的纵向流管束支撑,例如折流杆式、空心环式、整圆形异形孔折流板,还可以用折流带或折流棒来代替折流板等。这些方法都可以有效地防止管束振动。

    4 结语  

    振动问题最好是在事前预防,而不是待振动出现后再去修正。这就要求我们能在设计过程中充分考虑各种因素,只有这样才能使设计的产品更加完善,操作使用更加安全可靠。

 



上一页:当代MoMA工程热泵空调系统埋地换热器施工技术
下一页:镍磷化学镀技术在换热器管束防腐中的应用

评论

发表评论
[ 字号大小: ] [ 加入收藏 ] [ 打印 ] [ 关闭 ]

地址:哈尔滨市南岗区哈军工院内 电话:0451-83027338 传真:0451-82552085 厂长:黄峰 手机:13946031568